Distance functions and statistics
 Jens Chr. Larsen

Department of Mathematics, The Royal Veterinary and Agricultural University, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark

Received 12 July 2000

Abstract

This paper proves that the Riemannian distance function is maximal in the class of distance functions associated with the Riemannian metric tensor.

Secondly, it is proven that there exists a unique minimum of $$
L(v)=\sum_{i=1}^{m} d\left(p_{i}, \gamma_{v}\left(t_{i}\right)\right)^{2}, \quad v \in T M
$$ on a complete Riemannian surface (M, g) with small curvature, small curvature change and injectivity radius $+\infty$. Here $p_{i} \in M$ and γ_{v} is the maximal geodesic with initial velocity v and $0<t_{1}<\cdots<t_{m}$. © 2002 Elsevier Science B.V. All rights reserved.

MSC: 53B21; 58B20
Subj. Class: Differential geometry
Keywords: Distance function; Metric tensor; Triangle inequality; Geodesic regression

1. Distance functions and metric tensors

Let (M, g) denote a smooth, connected Riemannian manifold. Furthermore, let

$$
d_{g}: M \times M \rightarrow \mathbb{R}
$$

denote the Riemannian distance function of g. For small enough v, we have

$$
\begin{equation*}
d_{g}^{2}(\pi(v), \exp (v))=\langle v, v\rangle \tag{1.1}
\end{equation*}
$$

Let $p=\pi(v)$ and take a chart (U, ϕ) around $p .(\tilde{U}, \tilde{\phi})$ denotes the tangent bundle chart induced by (U, ϕ). Define

$$
d_{g, \phi}=d_{g}^{2} \circ\left(\phi^{-1} \times \phi^{-1}\right), \quad \tilde{\phi}(v)=(x, h), \quad \exp ^{\phi}(x, h)=\phi \circ \exp \circ \tilde{\phi}^{-1}(x, h)
$$

Equality (1.1) reads in our local coordinates

$$
d_{g, \phi}\left(x, \exp ^{\phi}(x, h)\right)=\sum_{i, j} g_{i j}(x) h^{i} h^{j}
$$

Now

$$
\frac{\partial^{2}}{\partial h_{a} \partial h_{b}} \sum_{i, j} g_{i j} h^{i} h_{\mid h=0}^{j}=2 g_{a b}(x)
$$

while

$$
\begin{aligned}
& \frac{\partial^{2}}{\partial h_{b} \partial h_{a}} d_{g, \phi}\left(x, \exp ^{\phi}(x, h)\right)_{\mid h=0}=\left.\frac{\partial}{\partial h_{b}}\left(\frac{\partial d_{g, \phi}}{\partial z_{l}}\left(x, \exp ^{\phi}(x, h)\right) \frac{\partial \exp _{l}^{\phi}}{\partial h_{a}}(x, h)\right)\right|_{h=0} \\
& \quad=\frac{\partial^{2} d_{g, \phi}}{\partial z_{l} \partial z_{m}}\left(x, \exp ^{\phi}(x, h)\right) \frac{\partial \exp _{l}^{\phi}}{\partial h_{a}}(x, h) \frac{\partial \exp _{m}^{\phi}}{\partial h_{b}}(x, h)_{\mid h=0}=\frac{\partial^{2} d_{g, \phi}}{\partial z_{l} \partial z_{m}}(x, x) \delta_{a}^{l} \delta_{b}^{m} \\
& \quad=\frac{\partial^{2} d_{g, \phi}}{\partial z_{a} \partial z_{b}}(x, x)
\end{aligned}
$$

Hence

$$
\frac{\partial^{2} d_{g, \phi}}{\partial z_{a} \partial z_{b}}(x, x)=2 g_{a b}(x)
$$

We have used that

$$
\frac{\partial d_{g, \phi}}{\partial z_{l}}(x, x)=0
$$

since $d_{g, \phi} \geq 0$ and $d_{g, \phi}(x, x)=0$. Also

$$
\frac{\partial \exp _{l}^{\phi}}{\partial h_{a}}=\delta_{a}^{l}
$$

since

$$
d \exp _{p}(0)=\mathrm{id}
$$

We see that a Riemannian distance function $d=d_{g}$ satisfies

1. $d(p, p)=0 \forall p \in M$.
2. $d(p, q)=d(q, p) \forall p, q \in M$.
3. $d(p, r) \leq d(p, q)+d(q, r) \forall p, q, r \in M$.
4. $d^{2}: M \times M \rightarrow \mathbb{R}$ is C^{∞} on an open neighbourhood of the diagonal $\Delta \subset M \times M$ and

$$
\left\{\frac{\partial^{2} d_{\phi}}{\partial z_{l} \partial z_{m}}(\phi(p), \phi(p))\right\}_{l, m}
$$

is positive definite $\forall p \in M$ and every chart (U, ϕ) around p.

A function $d: M \times M \rightarrow \mathbb{R}$ satisfying (1)-(4) above is called a distance function and is said to satisfy the condition R^{∞}.
So a Riemannian metric tensor gives rise to a distance function d_{g} satisfying the condition R^{∞}.

Take $p \in M$ and a chart (U, ϕ) around p. Define

$$
g_{k l}(p)=\frac{1}{2} \frac{\partial^{2} d_{\phi}}{\partial z_{k} \partial z_{l}}(\phi(p), \phi(p)) .
$$

This is a coordinate invariant definition of

$$
\begin{equation*}
g(p) \tag{1.2}
\end{equation*}
$$

where g is a smooth Riemannian metric tensor.
We shall agree to say that a distance function d satisfying the condition R^{∞} is associated with the metric g provided

$$
g_{k l}(p)=\frac{1}{2} \frac{\partial^{2} d_{\phi}}{\partial z_{k} \partial z_{l}}(\phi(p), \phi(p))
$$

in some and hence any chart (U, ϕ) around p.
In Section 2, we shall show that the Riemannian distance function of a metric g gives an upper bound for the distance functions satisfying the condition R^{∞} associated with g, see Theorem 2.1.

In Section 3, we consider the function

$$
L: T M \rightarrow M
$$

defined in the abstract. In Theorem 3.1, we prove that on a complete surface (M, g) with small curvature, small curvature change and injectivity radius $+\infty$ there is a unique vector v, giving a minimum of L on $T M$. In other words there is a unique geodesic, γ_{v} which approximates the points p_{1}, \ldots, p_{m} in the best possible way. Notice that, in case $M=\mathbb{R}$ with the standard metric we are considering the usual linear regression problem, where we find the line in the plane approximating data $\left(t_{1}, p_{1}\right), \ldots,\left(t_{m}, p_{m}\right)$ in the best possible way. Here L is the sum of least squares.

2. Maximality of the Riemannian distance function

Theorem 2.1. If $d: M \times M \rightarrow \mathbb{R}$ satisfies the condition R^{∞} then there exists an open neighbourhood Ω of Δ in $M \times M$, such that

$$
d \leq d_{g}
$$

on Ω.
Proof. g has a Riemannian distance function

$$
d_{g}: M \times M \rightarrow \mathbb{R}
$$

Here d_{g}^{2} is smooth on an open neighbourhood of the diagonal in $M \times M$. In fact, there exists an open neighbourhood Ω of Δ in $M \times M$, such that every $(p, q) \in \Omega$ is contained in a

$$
\mathcal{C} \times \mathcal{C}
$$

where \mathcal{C} is a convex open set such that

$$
d_{g}(p, q)^{2}=\left\langle\sigma_{p q}^{\prime}(0), \sigma_{p q}^{\prime}(0)\right\rangle,
$$

where $\sigma_{p q}$ is the unique geodesic in \mathcal{C} joining $p=\sigma_{p q}(0)=p$ and $\sigma_{p q}(1)=q$.
Letting $d=d_{\phi}$, we know that

$$
d_{\phi}(x, \gamma(t))=t^{2}\left\langle\gamma^{\prime}(0), \gamma^{\prime}(0)\right\rangle+t^{3} h(t)
$$

for a smooth function h. Now let γ denote a geodesic for the Riemannian metric g. The triangle inequality becomes

$$
d(x, \gamma(t+s)) \leq d(x, \gamma(t))+d(\gamma(t), \gamma(t+s))+2 \sqrt{d(x, \gamma(t))} \sqrt{d(\gamma(t), \gamma(t+s))} .
$$

We shall use this inequality to derive a differential inequality for h. Now

$$
d(x, \gamma(t+s))=(t+s)^{2}\left\langle\gamma^{\prime}(0), \gamma^{\prime}(0)\right\rangle+(t+s)^{3} h(t+s)
$$

and

$$
d(\gamma(t), \gamma(t+s))=s^{2}\left\langle\gamma^{\prime}(t), \gamma^{\prime}(t)\right\rangle+s^{3} h_{t}(s)
$$

Using the standard trick from singularity theory, we write

$$
h(t)-h(t+s)=s k(t, s),
$$

where k is smooth and

$$
k(t, 0)=-h^{\prime}(t)
$$

The triangle inequality above becomes for $s>0$

$$
\begin{aligned}
& s\left(s\left\langle\gamma^{\prime}(0), \gamma^{\prime}(0)\right\rangle+2 t\left\langle\gamma^{\prime}(0), \gamma^{\prime}(0)\right\rangle+3 t^{2} h(t+s)+3 t s h(t+s)+s^{2} h(t+s)\right) \\
& \quad \leq s\left(t^{3} k(t, s)+s\left\langle\gamma^{\prime}(t), \gamma^{\prime}(t)\right\rangle+s^{2} h_{t}(s)+2 t \sqrt{\left|\gamma^{\prime}(0)\right|^{2}+t h(t)} \sqrt{\left|\gamma^{\prime}(0)\right|^{2}+s h_{t}(s)}\right) .
\end{aligned}
$$

Cancelling the factor s on each side and letting $s \rightarrow 0$, we find for $t \geq 0$

$$
2 t\left\langle\gamma^{\prime}(0), \gamma^{\prime}(0)\right\rangle+3 t^{2} h(t) \leq-t^{3} h^{\prime}(t)+2 t \sqrt{\left|\gamma^{\prime}(0)\right|^{2}+t h(t) \mid} \gamma^{\prime}(0) \mid .
$$

So for $t>0$

$$
h^{\prime}(t) \leq \frac{1}{t^{2}}\left(2 \sqrt{\left|\gamma^{\prime}(0)\right|^{2}+\operatorname{th}(t)}\left|\gamma^{\prime}(0)\right|-2\left|\gamma^{\prime}(0)\right|^{2}-3 \operatorname{th}(t)\right)=\frac{1}{t^{2}} H(t h(t)) .
$$

Here

$$
H(x)=2 \sqrt{\left|\gamma^{\prime}(0)\right|^{2}+x}\left|\gamma^{\prime}(0)\right|-2\left|\gamma^{\prime}(0)\right|^{2}-3 x
$$

Notice that

$$
H^{\prime}(x)=\frac{\left|\gamma^{\prime}(0)\right|}{\sqrt{\left|\gamma^{\prime}(0)\right|^{2}+x}-3}<0
$$

for $x \geq 0$. Since $H(0)=0$, it follows that

$$
H(x)<0, \quad x>0
$$

Assume for contradiction that there exists $t_{*}>0$, such that $h\left(t_{*}\right)=x_{0}>0$. Then

$$
h^{\prime}\left(t_{*}\right) \leq H\left(t_{*} h\left(t_{*}\right)\right)<0
$$

So

$$
\left.h(t)>x_{0}, \quad t \in\right] t_{*}-\delta, t_{*}[.
$$

If there exists $t \in] 0, t_{*}\left[\right.$, such that $h(t) \leq x_{0}$ then there exists $\hat{t} \geq 0$, such that

$$
\left.h(\hat{t})=x_{0}>0, \quad h(t) \geq x_{0}, \quad t \in\right] \hat{t}, t_{*}[.
$$

But, then

$$
h^{\prime}(\hat{t})<0
$$

which is impossible. Hence

$$
h(t) \geq x_{0}, \quad t \in\left[0, t_{*}\right] .
$$

In particular,

$$
h(0) \geq x_{0}>0
$$

contradicting the fact that

$$
h(0)=0
$$

according to smoothness of h and the differential inequality for h. Consequently, $h(t) \leq$ $0, t>0$. Hence the Theorem.

Example 2.2. We shall now show that the inequality in Theorem 2.1 can be sharp. Consider then

$$
S^{n} \subset \mathbb{R}^{n+1}
$$

with the standard Riemannian metric tensor g and the corresponding distance function d_{g}. The Euclidean norm in \mathbb{R}^{n+1} is denoted by $\left\|\|_{2}\right.$. Then

$$
d(x, y)=\|x-y\|_{2}
$$

defines a distance function

$$
d: S^{n} \times S^{n} \rightarrow \mathbb{R}
$$

satisfying the condition R^{∞}. Let $x, v \in S^{n}, x \perp v$.

$$
\gamma(t)=x \cos t+v \sin t, \quad t \in \mathbb{R}
$$

is then a geodesic and

$$
\frac{\partial^{2}}{\partial t^{2}} d^{2}(x, \gamma(t))_{\mid t=0}=2
$$

So d induces the standard Riemannian metric tensor g. But

$$
d(x, y)<d_{g}(x, y), \quad x \neq y, \quad x, y \in S^{n} .
$$

Example 2.3. Define smooth arc length parameterized curves

$$
\alpha_{i}: I_{i} \rightarrow \mathbb{H},
$$

where \mathbb{H} is a Hilbert space and I_{i} is an open interval in \mathbb{R}. Define a distance function on

$$
U=I_{1} \times \cdots \times I_{n}
$$

by

$$
d^{2}(x, y)=\left\|\alpha_{1}\left(x_{1}\right)-\alpha_{1}\left(y_{1}\right)\right\|^{2}+\cdots+\left\|\alpha_{n}\left(x_{n}\right)-\alpha_{n}\left(y_{n}\right)\right\|^{2} .
$$

Then d^{2} is smooth and induces a flat metric. Also d satisfies the condition R^{∞}.

3. Distance functions and statistics

In this section, let (M, g) denote a complete, smooth Riemannian surface. Assume we are given mutually distinct points

$$
p_{1}, \ldots, p_{m} \in M
$$

and real numbers

$$
0<t_{1}<\cdots<t_{m}, \quad T=\left(t_{1}, \ldots, t_{m}\right) .
$$

Define a non-negative function

$$
L: T M \rightarrow \mathbb{R}
$$

on the tangent bundle $T M$ of M by

$$
L(v)=\sum_{i=1}^{m} d\left(p_{i}, \gamma_{v}\left(t_{i}\right)\right)^{2}, \quad v \in T M .
$$

Given $v \in T M$, define

$$
\begin{aligned}
& K_{v}=\frac{\left\langle\nabla_{v} R\left(v_{1}, v_{2}\right) v_{1}, v_{2}\right\rangle}{b\left(v_{1}, v_{2}\right)}, \quad v_{i} \in T_{\pi(v)} M \\
& b\left(v_{1}, v_{2}\right)=\left\langle v_{1}, v_{2}\right\rangle\left\langle v_{2}, v_{2}\right\rangle-\left\langle v_{1}, v_{2}\right\rangle^{2} \neq 0
\end{aligned}
$$

where R is the curvature tensor of M. Assume the injectivity radius $\iota(M)=+\infty$.

Theorem 3.1. L has a minimum v_{0} on TM. There exist positive functions

$$
Q=Q\left(T,\left\{d\left(p_{i}, p_{j}\right)\right\}_{i, j}\right)>0, \quad Q_{1}=Q_{1}\left(T,\left\{d\left(p_{i}, p_{j}\right)\right\}_{i, j}\right)>0
$$

such that if

$$
|K| \leq Q^{2}, \quad\left|K_{v}\right| \leq Q_{1} \quad \forall_{v} \text { with }\|v\|=1
$$

then v_{0} is unique.
Proof. Existence. Define

$$
K_{2}=\max _{i \geq 2}\left(d\left(p_{i}, p_{1}\right)\right)
$$

Given $v \in T M$, let $p=\pi(v)$. For $d\left(p, p_{1}\right) \leq K_{2}$ and $\|v\| \leq K_{3}$ for some $K_{3}>0$, we find

$$
\begin{aligned}
\sum_{i=1}^{m} d\left(p_{i}, \gamma_{v}\left(t_{i}\right)\right)^{2} & \leq \sum_{i=1}^{m}\left(d\left(p_{i}, p_{1}\right)+d\left(p_{1}, p\right)+d\left(p, \gamma_{v}\left(t_{i}\right)\right)\right)^{2} \\
& \leq \sum_{i=1}^{m}\left(K_{2}+K_{2}+t_{i} K_{3}\right)^{2} \triangleq K_{1}
\end{aligned}
$$

There exists $R>K_{2}$ such that

$$
\sum_{i=1}^{m} d\left(p_{i}, \gamma_{v}\left(t_{i}\right)\right)^{2} \geq \sum_{i=1}^{m}\left(d\left(p_{1}, p\right)-t_{i}\|v\|-d\left(p_{i}, p_{1}\right)\right)^{2}>K_{1}
$$

for $d\left(p_{1}, p\right)>R$. Estimate

$$
d\left(p_{i}, \gamma_{v}\left(t_{i}\right)\right) \geq\left|d\left(\gamma_{v}\left(t_{1}\right), \gamma_{v}\left(t_{i}\right)\right)-d\left(p_{1}, \gamma_{v}\left(t_{1}\right)\right)-d\left(p_{i}, p_{1}\right)\right| .
$$

If $d\left(p_{1}, \gamma_{v}\left(t_{1}\right)\right) \leq \sqrt{K_{1}}$ and $\|v\| \geq K_{4}$, then

$$
\sum_{i=1}^{m} d\left(p_{i}, \gamma_{v}\left(t_{i}\right)\right)^{2} \geq \sum_{i=1}^{m}\left(K_{4}\left|t_{i}-t_{1}\right|-\sqrt{K_{1}}-K_{2}\right)^{2}>K_{1}
$$

It remains to consider $\|v\| \in\left[K_{3}, K_{4}\right]$. For $d\left(p_{1}, p\right)>K_{5}>R$, we find

$$
d\left(p_{1}, \gamma_{v}\left(t_{1}\right)\right) \geq d\left(p_{1}, p\right)-d\left(\gamma_{v}\left(t_{1}\right), p\right)=d\left(p_{1}, p\right)-\|v\| t_{1}>K_{5}-K_{4} t_{1}>\sqrt{K_{1}} .
$$

So L assumes a minimum on the compact set

$$
d\left(p_{1}, p\right) \leq K_{5}, \quad\|v\| \leq K_{4}
$$

This proves existence of v_{0}.
Uniqueness. Define the two Jacobi map

$$
F_{2}\left(\sigma_{s}, \sigma_{s t}, \sigma_{t}\right)=\left(R\left(\sigma_{t}, \sigma_{s}\right) \sigma_{s}\right)_{t}+R\left(\sigma_{t}, \sigma_{s}\right) \sigma_{s t}+\left(R\left(\sigma_{t}, \sigma_{s}\right) \sigma_{t}\right)_{s}-R\left(\sigma_{t t}, \sigma_{s}\right) \sigma_{s}
$$

for a two parameter geodesic variation σ of a unit speed geodesic $s \mapsto \sigma(s, 0)$. It gives rise to the two Jacobi equation

$$
Y_{2}^{\prime \prime}=F_{2}\left(\sigma_{s}, Y_{1}^{\prime}, Y_{1}\right)+R\left(Y_{2}, \sigma_{s}\right) \sigma_{s}, \quad Y_{1}=\sigma_{t}, \quad Y_{2}=\sigma_{t t}
$$

cf. [2]. This is the differential equation for the transverse acceleration vector field of a geodesic variation. Now let $E_{1}=\sigma_{s}, E_{2}$ denotes an orthonormal basis along $s \mapsto \sigma(s, 0)$. Write

$$
\sigma_{t}=y_{1} E_{1}+y_{2} E_{2}, \quad \sigma_{s t}=y_{1}^{\prime} E_{1}+y_{2}^{\prime} E_{2}, \quad \sigma_{t t}=z_{1} E_{1}+z_{2} E_{2}
$$

Let

$$
K_{1}=\left\langle R_{E_{1}}\left(E_{2}, E_{1}\right) E_{2}, E_{1}\right\rangle, \quad K_{2}=\left\langle R_{E_{2}}\left(E_{2}, E_{1}\right) E_{2}, E_{1}\right\rangle
$$

The above second-order differential equation for Y_{2} becomes

$$
z_{1}^{\prime \prime}=4 y_{2} y_{2}^{\prime} K+y_{2}^{2} K_{1}, \quad z_{2}^{\prime \prime}+K z_{2}=-2 y_{1} y_{2} K_{1}-y_{2}^{2} K_{2}-4 y_{2} y_{1}^{\prime} K=y
$$

on our surface (M, g).
We shall now prove that the Hessian of L is positive definite near the $p_{i}^{\prime} s$. To this end consider a non-constant geodesic

$$
c: I \rightarrow T M
$$

with

$$
c(0)=v, \quad c^{\prime}(0) \neq 0
$$

The base curve

$$
d=\pi \circ c
$$

is denoted d.
Define a geodesic variation $G=G^{i}$ with

$$
s \mapsto G(s, t)
$$

a geodesic from

$$
G(0, t)=p_{i} \text { to } \exp \left(t_{i} c(t)\right)=G(1, t)
$$

Let

$$
L_{i}(v)=d\left(p_{i}, \exp \left(t_{i} v\right)\right)^{2}
$$

Then

$$
\frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}}\left(L_{i} \circ c\right)_{t=0}=\frac{\mathrm{d}}{\mathrm{~d} s}\left(\left\langle G_{t t}, G_{s}\right\rangle\right)_{s=0}-2\left\langle R\left(G_{t}, G_{s}\right) G_{t}, G_{s}\right\rangle+2\left\langle G_{t s}, G_{t s}\right\rangle_{t=0}
$$

Notice that

$$
G_{t}(0,0)=0, \quad G_{t t}(0,0)=0
$$

We shall need a second geodesic variation defined by

$$
y(s, t)=\exp (s c(t))
$$

Notice here that

$$
y_{t t}(0)=(\pi \circ c)^{\prime \prime}(0)
$$

The strategy of the proof is to give an upper estimate for

$$
\left\|y_{t t}\left(t_{i}, 0\right)\right\|=\left\|G_{t t}(1,0)\right\|
$$

and a lower estimate for

$$
\left\|y_{t}\left(t_{i}, 0\right)\right\|=\left\|G_{t}(1,0)\right\|
$$

These estimates in turn will give an upper bound for

$$
\sum_{i=1}^{m}\left|\frac{\mathrm{~d}}{\mathrm{~d} s}\left\langle G_{t t}^{i}, G_{s}^{i}\right\rangle(0,0)\right|
$$

and a lower bound for

$$
\sum_{i=1}^{m}\left\langle G_{t s}^{i}, G_{t s}^{i}\right\rangle(0,0)
$$

Thus showing that

$$
\frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}}(L \circ c)(0)>0
$$

Initially we focus on estimates for the Jacobi field

$$
y_{t}(s, 0)=y_{1}\left(\frac{y_{s}}{\left|y_{s}\right|}\right)+y_{2} N
$$

where N is a unit parallel vector field orthogonal to y_{s}. Here we assume that $\left|y_{s}\right| \neq 0$ dealing with the case $\left|y_{s}\right|=0$ later. Let

$$
a=y_{1}^{\prime}(0), \quad b=y_{1}(0), \quad Q c=y_{2}^{\prime}(0), \quad d=y_{2}(0)
$$

Let y_{2}^{Q} and y_{2}^{-Q} denote solutions to

$$
y_{2}^{\prime \prime}-Q^{2} y_{2}=0
$$

and

$$
y_{2}^{\prime \prime}+Q^{2} y_{2}=0
$$

respectively, with

$$
\left(y_{2}^{Q}\right)^{\prime}(0)=\left(y_{2}^{-Q}\right)^{\prime}(0)=Q c, \quad\left(y_{2}^{Q}\right)(0)=\left(y_{2}^{-Q}\right)(0)=d
$$

Consider first the case $d>0$. We have

$$
y_{2}^{-Q}(t) \leq y_{2}(t) \leq y_{2}^{Q}(t)
$$

as long as $y_{2}^{-Q}(t)>0$. So

$$
c \sin \left(Q t_{i}\right)+d \cos \left(Q t_{i}\right) \leq y_{2}\left(t_{i}\right) \leq c \sinh \left(Q t_{i}\right)+d \cosh \left(Q t_{i}\right)
$$

We shall now derive a lower bound for

$$
\sum_{i=1}^{m}\left|Y\left(t_{i}\right)\right|
$$

First of all

$$
\left|y_{1}\left(t_{i}\right)-y_{1}\left(t_{j}\right)\right|=|a|\left|t_{i}-t_{j}\right| \leq\left|y_{1}\left(t_{i}\right)\right|+\left|y_{1}\left(t_{j}\right)\right| .
$$

Hence

$$
|a| \sum_{i, j=1}^{m}\left|t_{j}-t_{i}\right| \leq 2 m \sum_{i=1}^{m}\left|y_{1}\left(t_{i}\right)\right|
$$

Furthermore,

$$
m|b| \leq \sum_{i=1}^{m}\left|y_{1}\left(t_{i}\right)\right|+|a| t_{i} \leq\left(1+\sum_{i=1}^{m} t_{i} \frac{2 m}{\sum_{i, j=1}^{m}\left|t_{j}-t_{i}\right|}\right) \sum_{i=1}^{m}\left|y_{1}\left(t_{i}\right)\right| .
$$

Now

$$
d \cos Q t_{i} \leq y_{2}\left(t_{i}\right)-c \sin Q t_{i}
$$

Also

$$
-c \sinh Q t_{i} \leq-y_{2}\left(t_{i}\right)+d \cosh Q t_{i} \leq-y_{2}\left(t_{i}\right)+\frac{\cosh Q t_{i}}{\cos Q t_{j}}\left(y_{2}\left(t_{j}\right)-c \sin Q t_{j}\right)
$$

Hence

$$
\begin{equation*}
c\left(\frac{\cosh Q t_{i}}{\cos Q t_{j}} \sin Q t_{j}-\sinh Q t_{i}\right) \leq y_{2}\left(t_{j}\right) \frac{\cosh Q t_{i}}{\cos Q t_{j}}-y_{2}\left(t_{i}\right) . \tag{3.1}
\end{equation*}
$$

For $c>0$, we have

$$
d \cos Q t_{i} \leq y_{2}\left(t_{i}\right)-d \cos Q t_{i} \leq \sum_{i=1}^{m}\left|y_{2}\left(t_{i}\right)\right|
$$

For $c<0$, we get with $i>j$ from (3.1) for small Q

$$
-c \leq \frac{1}{\sinh Q t_{i}-\left(\cosh Q t_{i} / \cos Q t_{j}\right) \sin Q t_{j}} y_{2}\left(t_{j}\right) \frac{\cosh Q t_{i}}{\cos Q t_{j}} .
$$

Here we assume that Q is so small such that

$$
\sinh Q t_{i}-\frac{\cosh Q t_{i}}{\cos Q t_{j}} \sin Q t_{j}>0
$$

All in all, we have an estimate

$$
\sum_{i=1}^{m}\left|Y\left(t_{i}\right)\right| \geq \tilde{K}(|a|+|b|+|c|+|d|)
$$

It may happen that $y_{2}\left(t_{*}\right)<0$ for some $t_{*}>0$. If there are at least two $t_{i}^{\prime} s$ for which

$$
y_{2}\left(t_{i}\right)<0
$$

we can argue as follows.
By y^{Q} we denote the solution to

$$
y_{2}^{\prime \prime}-Q^{2} y_{2}=0
$$

with $y^{Q}(0)=d, y^{Q}\left(t_{*}\right)=0, t_{*}$ being the first zero for y_{2}. So

$$
y^{Q}(t)=c \cosh (Q t)+d \sinh (Q t) .
$$

Assume for contradiction that

$$
\left(y^{Q}\right)^{\prime}(0)>y_{2}^{\prime}(0) .
$$

Then

$$
y_{2}^{\prime \prime}=-K y_{2}<Q y_{2}<Q y^{Q}=\left(y^{Q}\right)^{\prime \prime} .
$$

So

$$
y^{Q}\left(t_{*}\right)>y_{2}\left(t_{*}\right)=0 .
$$

A contradiction and $\left(y^{Q}\right)^{\prime}(0) \leq y_{2}^{\prime}(0)$. Now we deduce that

$$
\left.y^{Q}(t) \leq y_{2}(t), \quad t \in\right] 0, t_{*}[.
$$

Hence

$$
\left(y^{Q}\right)^{\prime}\left(t_{*}\right)>y_{2}^{\prime}\left(t_{*}\right)=\tilde{c} .
$$

Argue as before to obtain

$$
|\tilde{c}| \leq \sum_{i=1}^{m}\left|y_{2}\left(t_{i}\right)\right|
$$

Now compute

$$
\left(y^{Q}\right)^{\prime}\left(t_{*}\right)=-Q \sqrt{\left(\left(y^{Q}\right)^{\prime}(0)\right)^{2}-d^{2}}
$$

Hence

$$
\tilde{K}_{3}|c|, \tilde{K}_{3} d \leq K_{3}\left|\left(y^{Q}\right)^{\prime}\left(t_{*}\right)\right| \leq K_{3}|\tilde{c}| \leq \sum_{i=1}^{m}\left|y_{2}\left(t_{i}\right)\right|
$$

for small Q. We have

$$
x_{1}^{i}(s)=a_{1}^{i} s, \quad\left|x_{2}^{i}(s)\right| \leq\left|c_{1}^{i}\right| \sinh (Q s), \quad\left(x_{2}^{i}\right)^{\prime}(0)=Q c_{1}^{i} .
$$

Hence

$$
\begin{aligned}
\tilde{K}(|a|+|b|+|c|+|d|) & \leq \sum_{i=1}^{m}\left|Y\left(t_{i}\right)\right|=\sum_{i=1}^{m}\left|\frac{\partial G^{i}}{\partial t}(1,0)\right|=\sum_{i=1}^{m}\left|x_{1}^{i}\left(f_{i}\right)\right|+\left|x_{2}^{i}\left(f_{i}\right)\right| \\
& \leq \sum_{i=1}^{m}\left|a_{1}^{i}\right| f_{i}+\left|c_{1}^{i}\right| \sinh \left(Q f_{i}\right)
\end{aligned}
$$

$f_{i}=d\left(p_{i}, \gamma_{v}\left(t_{i}\right)\right)<f_{0}$. We obtain an estimate

$$
\sum_{i=1}^{m}\left\langle G_{t s}^{i}, G_{t s}^{i}\right\rangle(0,0) \geq \sum_{i=1}^{m} \frac{1}{f_{i}} \hat{K}(|a|+|b|+|c|+|d|)^{2}
$$

To derive an upper bound for

$$
\sum_{i=1}^{m}\left|\frac{\mathrm{~d}}{\mathrm{~d} s}\left\langle G_{t t}^{i}, G_{s}^{i}\right\rangle\right|
$$

we observe that

$$
z_{2}(t)=a(t) \int_{0}^{t} \frac{B(s)}{a(s)^{2}} \mathrm{~d} s+\hat{z}_{2}(t), \quad B(t)=\int_{0}^{t} y(s) a(s) \mathrm{d} s,
$$

where a is the solution to

$$
a^{\prime \prime}+K a=0, \quad a^{\prime}(0)=1, \quad a(0)=0
$$

and \hat{z}_{2} is the solution to

$$
\hat{z}_{2}^{\prime \prime}+K \hat{z}_{2}=0, \quad \hat{z}_{2}(0)=z_{2}(0), \quad \hat{z}_{2}^{\prime}(0)=z_{2}^{\prime}(0)
$$

Taking Q small we have $a\left(t_{i}\right)>0$.
We shall need to examine the differential equations for c, the geodesic in $T M$. So, write locally

$$
c^{\phi}=(d, E): I \rightarrow \phi(U) \times \mathbb{R}^{n}
$$

Here (U, ϕ) is a chart on M such that

$$
g_{i j}(p)=\delta_{i}^{j}, \quad \pi(v)=p, \quad \Gamma_{i j}^{k}(p)=0
$$

By $G_{\alpha \beta}$ we denote the coordinates of the Sasaki metric, see [1], in the tangent bundle chart associated with ϕ and we use the terminology

$$
\alpha=(i, I), \quad \beta=(j, J), \quad i, j, I, J \in\{1, \ldots, n\}
$$

We have

$$
\begin{aligned}
& G_{i j}(p)=g_{i j}(p)+g_{a b} \Gamma_{d j}^{a}(p) v^{c} \Gamma_{d j}^{b}(p) v^{d}=g_{i j}(p), \quad G_{i J}(p)=[k i, J]_{p} v^{k}=0, \\
& G_{I J}(p)=g_{I J}(p)
\end{aligned}
$$

We have

$$
\frac{\mathrm{d}^{2} E_{K}}{\mathrm{~d} t^{2}}+\Gamma_{\alpha \beta}^{K, N} c_{\alpha}^{\prime} c_{\beta}^{\prime}=0, \quad N=T M
$$

Direct computation using the formulas for $G_{\alpha \beta}$ above yields

$$
\Gamma_{i j}^{M, N}(p)=\frac{1}{2}\left(\frac{\partial}{\partial x_{j}}[k i, M]+\frac{\partial}{\partial x_{i}}[k j, M]\right)_{p} v^{k}, \quad \Gamma_{i J}^{M, N}(p)=0, \quad \Gamma_{I, J}^{M, N}(p)=0 .
$$

It follows that

$$
c_{t t}=\left(\frac{\mathrm{d}^{2} E^{K}}{\mathrm{~d} t^{2}}+\frac{\partial}{\partial x_{l}}\left(\Gamma_{i j}^{K}(p) d_{l}^{\prime} d_{i}^{\prime} E_{j}\right) \partial_{K}=0\right.
$$

So there exists two parallel vector fields E_{1} and E_{2} along d, such that

$$
c(t)=t E_{1}(t)+E_{2}(t)
$$

The differential equations for d are

$$
\frac{\mathrm{d}^{2} d_{k}}{\mathrm{~d} t^{2}}+\Gamma_{\alpha \beta}^{k, N} c_{\alpha}^{\prime} c_{\beta}^{\prime}=0
$$

Now

$$
\Gamma_{i j}^{k, N}(p)=\Gamma_{i j}^{k, M}(p)=0, \quad \Gamma_{I J}^{k}(p)=0
$$

So

$$
\frac{\mathrm{d}^{2} d_{k}}{\mathrm{~d} t^{2}}=-2 \Gamma_{i J}^{k, N} d_{i}^{\prime} E_{j}^{\prime}
$$

where

$$
\Gamma_{i J}^{k, N}=R_{a k i}^{J} v^{a}
$$

We consequently have a bound

$$
\left|z_{1}(0)\right|,\left|z_{2}(0)\right| \leq\left|d^{\prime \prime}(0)\right| \leq L Q^{2}(|a|+|b|+|c|+|d|)^{2}|v|
$$

for the acceleration of the base curve $d=\pi \circ c$ of c. Furthermore,

$$
\left|z_{1}^{\prime}(0)\right|,\left|z_{2}^{\prime}(0)\right| \leq\left|y_{t t s}(0,0)\right|=\left|R\left(v, d^{\prime}\right) d^{\prime}\right| \leq \tilde{L} Q^{2}(|a|+|b|+|c|+|d|)^{2}|v|
$$

We have estimates

$$
\left|y_{1}(s)\right| \leq|a| s+|b|, \quad\left|y_{2}(s)\right| \leq 2|c| s+2|d|
$$

and

$$
b_{1} s \leq a(s) \leq b_{2} s, \quad 0<b_{1}<1<b_{2} .
$$

We have for some $\tilde{L}>0$ such that

$$
\begin{aligned}
|B(t)| & \leq \int_{0}^{t}(|a|+|b|+|c|+|d|)^{2} \tilde{L}\left(Q^{2}+Q_{1}\right) s \mathrm{~d} s \\
& \leq \tilde{L}(|a|+|b|+|c|+|d|)^{2}\left(Q^{2}+Q_{1}\right) \frac{1}{2} t^{2}
\end{aligned}
$$

Hence

$$
\left|z_{2}\left(t_{i}\right)\right| \leq L_{1}(|a|+|b|+|c|+|d|)^{2}\left(Q^{2}+Q+Q_{1}\right)
$$

Similarly, integrating twice

$$
\left|z_{1}\left(t_{i}\right)\right| \leq L_{2}(|a|+|b|+|c|+|d|)^{2}\left(Q^{2}+Q+Q_{1}\right)
$$

Now we can conclude the proof by observing that for $s=f_{i}$ we have

$$
v_{1}(s)=v_{1}^{\prime}(0) s+\int_{0}^{s} \int_{0}^{u}\left(4 x_{2} x_{2}^{\prime} K+x_{2}^{2} K_{1}\right) \mathrm{d} \tau \mathrm{~d} u=\left\langle\frac{G_{t t}, G_{s}}{\left|G_{s}\right|}\right\rangle .
$$

So

$$
\begin{aligned}
f_{i}\left|v_{1}^{\prime}(0)\right| & \leq\left|\left\langle\frac{G_{t t}, G_{s}}{\left|G_{s}\right|}\right\rangle-\int_{0}^{f} \int_{0}^{u}\left(4 x_{2} x_{2}^{\prime} K+x_{2}^{2} K_{1}\right) \mathrm{d} \tau \mathrm{~d} u\right| \\
& \leq \sqrt{z_{1}\left(t_{i}\right)^{2}+z_{2}\left(t_{i}\right)^{2}}+\hat{L}\left(Q^{2}+Q_{1}\right)\left|c_{1}\right|^{2} .
\end{aligned}
$$

Hence

$$
\left|\frac{\mathrm{d}}{\mathrm{~d} s}\left\langle\frac{G_{t t}, G_{s}}{\left|G_{s}\right|}\right\rangle\right| \leq \sum_{i=1}^{m} \frac{1}{f_{i}} L(|a|+|b|+|c|+|d|)^{2}\left(Q+Q^{2}+Q_{1}\right) .
$$

Comparing the summands of the Hessian of L we see that this Hessian is positive definite near the $p_{i}^{\prime} s$. Uniqueness of v_{0} follows, thereby proving the theorem.

Example 3.2. Suppose (M, g) is a complete surface with a closed geodesic γ of period $T>0$ with

$$
\gamma(t)=\gamma(t+T), \quad t \in \mathbb{R}
$$

Let $3 \tau \in] 0, T$ [and set

$$
p_{1}=\gamma(\tau), \quad p_{2}=\gamma(2 \tau), \quad p_{3}=\gamma(3 \tau)
$$

Define

$$
\beta(t)=\gamma\left(-T+\frac{T+\tau}{\tau} t\right)
$$

with

$$
\beta^{\prime}(0)=\frac{T+\tau}{\tau} \gamma^{\prime}(0)
$$

and

$$
\beta(\tau)=p_{1}, \quad \beta(2 \tau)=p_{2}, \quad \beta(3 \tau)=p_{3}
$$

Then

$$
L(v)=\sum_{i=1}^{3} d\left(p_{i}, \gamma_{v}\left(t_{i}\right)\right)^{2}
$$

has at least two distinct minima $\gamma^{\prime}(0)$ and $((T+\tau) / \tau) \gamma^{\prime}(0)$. Here $\iota(M)<+\infty$.

References

[1] W. Klingenberg, Riemannian Geometry, 2nd Edition, Walter de Gruyter, New York.
[2] J.C. Larsen, The Jacobi map, J. Geom. Phys. 20 (1996) 54-76.

